為大家?guī)淼氖?strong>微分方程的物理運(yùn)用ppt課件,使用非常精簡(jiǎn)的風(fēng)格,排版清晰有條理,內(nèi)容全面,文字講解詳細(xì),附帶大量例題指導(dǎo),高清免費(fèi)下載。
微分方程的物理運(yùn)用ppt課件素材
微分方程簡(jiǎn)介
微分方程指含有未知函數(shù)及其導(dǎo)數(shù)的關(guān)系式。解微分方程就是找出未知函數(shù)。
微分方程是伴隨著微積分學(xué)一起發(fā)展起來的。微積分學(xué)的奠基人Newton和Leibniz的著作中都處理過與微分方程有關(guān)的問題。微分方程的應(yīng)用十分廣泛,可以解決許多與導(dǎo)數(shù)有關(guān)的問題。物理中許多涉及變力的運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)問題,如空氣的阻力為速度函數(shù)的落體運(yùn)動(dòng)等問題,很多可以用微分方程求解。此外,微分方程在化學(xué)、工程學(xué)、經(jīng)濟(jì)學(xué)和人口統(tǒng)計(jì)等領(lǐng)域都有應(yīng)用。
數(shù)學(xué)領(lǐng)域?qū)ξ⒎址匠痰难芯恐卦趲讉(gè)不同的面向,但大多數(shù)都是關(guān)心微分方程的解。只有少數(shù)簡(jiǎn)單的微分方程可以求得解析解。不過即使沒有找到其解析解,仍然可以確認(rèn)其解的部分性質(zhì)。在無法求得解析解時(shí),可以利用數(shù)值分析的方式,利用電腦來找到其數(shù)值解。 動(dòng)力系統(tǒng)理論強(qiáng)調(diào)對(duì)于微分方程系統(tǒng)的量化分析,而許多數(shù)值方法可以計(jì)算微分方程的數(shù)值解,且有一定的準(zhǔn)確度。
微分方程的特點(diǎn)
常微分方程的概念、解法、和其它理論很多,比如,方程和方程組的種類及解法、解的存在性和唯一性、奇解、定性理論等等。下面就方程解的有關(guān)幾點(diǎn)簡(jiǎn)述一下,以了解常微分方程的特點(diǎn)。
求通解在歷史上曾作為微分方程的主要目標(biāo),一旦求出通解的表達(dá)式,就容易從中得到問題所需要的特解。也可以由通解的表達(dá)式,了解對(duì)某些參數(shù)的依賴情況,便于參數(shù)取值適宜,使它對(duì)應(yīng)的解具有所需要的性能,還有助于進(jìn)行關(guān)于解的其他研究。
后來的發(fā)展表明,能夠求出通解的情況不多,在實(shí)際應(yīng)用中所需要的多是求滿足某種指定條件的特解。當(dāng)然,通解是有助于研究解的屬性的,但是人們已把研究重點(diǎn)轉(zhuǎn)移到定解問題上來。
一個(gè)常微分方程是不是有特解呢?如果有,又有幾個(gè)呢?這是微分方程論中一個(gè)基本的問題,數(shù)學(xué)家把它歸納成基本定理,叫做存在和唯一性定理。因?yàn)槿绻麤]有解,而我們要去求解,那是沒有意義的;如果有解而又不是唯一的,那又不好確定。因此,存在和唯一性定理對(duì)于微分方程的求解是十分重要的。
大部分的常微分方程求不出十分精確的解,而只能得到近似解。當(dāng)然,這個(gè)近似解的精確程度是比較高的。另外還應(yīng)該指出,用來描述物理過程的微分方程,以及由試驗(yàn)測(cè)定的初始條件也是近似的,這種近似之間的影響和變化還必須在理論上加以解決。
通常微分方程在很多學(xué)科領(lǐng)域內(nèi)有著重要的應(yīng)用,自動(dòng)控制、各種電子學(xué)裝置的設(shè)計(jì)、彈道的計(jì)算、飛機(jī)和導(dǎo)彈飛行的穩(wěn)定性的研究、化學(xué)反應(yīng)過程穩(wěn)定性的研究等。這些問題都可以化為求常微分方程的解,或者化為研究解的性質(zhì)的問題。應(yīng)該說,應(yīng)用常微分方程理論已經(jīng)取得了很大的成就,但是,它的現(xiàn)有理論也還遠(yuǎn)遠(yuǎn)不能滿足需要,還有待于進(jìn)一步的發(fā)展,使這門學(xué)科的理論更加完善。
- PC官方版
- 安卓官方手機(jī)版
- IOS官方手機(jī)版